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Abstract MicroRNAs are short non-coding RNAs that play
an important role in the regulation of gene expression. Hence,
microRNAs are considered as potential targets for engineering
of Chinese hamster ovary (CHO) cells to improve recombinant
protein production. Here, we analyzed and compared the
microRNA expression patterns of high, low, and non-
producing recombinant CHO cell lines expressing two struc-
turally different model proteins in order to identify microRNAs
that are involved in heterologous protein synthesis and secre-
tion and thus might be promising targets for cell engineering to
increase productivity. To generate reproducible and comparable

data, the cells were cultivated in a bioreactor under steady-state
conditions. Global microRNA expression analysis showed that
mature microRNAs were predominantly upregulated in the
producing cell lines compared to the non-producer. Several
microRNAswere significantly differentially expressed between
high and low producers, but none of them commonly for both
model proteins. The identification of target messenger RNAs
(mRNAs) is essential to understand the biological function of
microRNAs. Therefore, we negatively correlated microRNA
and global mRNA expression data and combined them with
computationally predicted and experimentally validated targets.
However, statistical analysis of the identified microRNA-
mRNA interactions indicated a considerable false positive rate.
Our results and the comparison to published data suggest that
the reaction of CHO cells to the heterologous protein expres-
sion is strongly product- and/or clone-specific. In addition, this
study highlights the urgent need for reliable CHO-specific
microRNA target prediction tools and experimentally validated
target databases in order to facilitate functional analysis of high-
throughput microRNA expression data in CHO cells.
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Introduction

Chinese hamster ovary (CHO) cells are the most frequently
applied expression system for the production of therapeutic
proteins, mainly because of their ability to grow in suspension
and to secrete complex recombinant proteins that are correctly
processed. CHO cells allow proper protein folding and post-
translational modifications such as human-like glycosylation
which might be required for biological efficacy. Mammalian
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cells have originally been considered as the least effective
production systems. But due to the advances in cell culture
technology over the last three decades, product titers of 1 to
5 g L−1 are typically reached in industry today (Hacker et al.
2009). This was mainly achieved by vector, media, and pro-
cess optimizations, but also, cell engineering has been applied
to improve the productivity of recombinant CHO cells. A
multitude of strategies to engineer apoptosis resistance, cell
proliferation, product secretion, or cell metabolism have been
described and are comprehensively reviewed elsewhere (Kim
et al. 2012). These approaches often include the stable overex-
pression of one or more genes, which constitutes an additional
burden to the translational machinery of the cell. To circumvent
this drawback, microRNAs (miRNAs) have been considered as
potential targets for cell engineering (Müller et al. 2008).
MicroRNAs are short (~22 nt) endogenous RNAs that play
an important role in the regulation of gene expression (Bartel
2004). They are predominantly transcribed by RNA polymer-
ase II, processed by Drosha and exported to the cytoplasm
where the ~70-nt precursor hairpin (pre-miRNA) is cleaved
by Dicer resulting in a miRNA/miRNA* duplex. One strand
(mature miRNA) associates with argonaute (AGO) proteins
and forms a miRNA-induced silencing complex (miRISC)
which recognizes the target messenger RNAs (mRNAs) pre-
dominantly by binding to the three prime untranslated region
(3′ UTR) through imperfect base pairing (Krol et al. 2010).
MicroRNAs act in a post-transcriptional manner by decreasing
translational efficiency and/or transcript levels. A single
miRNA can repress hundred different mRNAs and thereby
regulates entire gene networks (Hobert 2008). They play cru-
cial roles in a wide range of biological processes including
development, proliferation, differentiation, apoptosis, and me-
tabolism (Bartel 2004; He and Hannon 2004). In mammalian
cells, miRNAs are predicted to regulate or fine-tune gene
expression of ~50 % of all protein-coding genes (Krol et al.
2010). In CHO cells, it has already been shown that miRNAs
can be utilized to improve growth (Jadhav et al. 2012), apopto-
sis resistance (Druz et al. 2013), and specific productivity
(Barron et al. 2011; Jadhav et al. 2014; Strotbek et al. 2013).

In this study, we analyzed and compared the miRNA
expression pattern of high, low, and non-producing recombi-
nant CHO cell lines to identify miRNA targets that are in-
volved in recombinant protein synthesis and secretion and
thus might be promising starting points for cell engineering
to increase specific productivity. Cross-species miRNA mi-
croarrays were used as screening tools and quantitative re-
verse transcription polymerase chain reaction (qRT-PCR) for
the confirmation of differentially expressed miRNAs.
Samples for comparative physiological analyses are generally
taken in the exponential growth phase. However, the cellular
transcriptome of mammalian cells is very dynamic during
batch cultivation where the conditions change continuously
due to nutrient consumption and the accumulation of

metabolites (Hernandez Bort et al. 2012; Koh et al. 2009).
For this reason, we applied steady-state cultivation using a
continuous process (chemostat). This enabled the cultivation
of the cells with a defined specific growth rate in a constant
environment.

Because miRNAs regulate gene expression via interaction
with their target mRNAs, identifying targets is crucial for
understanding the biological function of miRNAs. However,
althoughmore than 400 expressed mature miRNAs have been
identified in CHO cells (Hackl et al. 2012), the exact biolog-
ical function of most of them in cultivated cells is still largely
unknown. To identify potential miRNA-mRNA interactions,
miRNA expression data were linked to mRNA expression
data from microarray analysis. But due to a lack of reliable
computational prediction tools and CHO-specific experimen-
tally validated miRNA target databases, high-throughput
miRNA target identification remains a major challenge.

Material and methods

Cell lines

Recombinant CHO suspension cell lines expressing the 3D6
single-chain Fv-Fc fusion antibody (3D6scFv-Fc) and human
serum albumin (HSA) with low and high productivities were
established as previously described (Maccani et al. 2014).
Briefly, protein-free cultivated dihydrofolate reductase deficient
CHO cells (DUKX-B11, ATCC CRL-9096) were used as host
cell line. After cotransfection with a pCI-neomammalian expres-
sion vector (Promega, Madison, WI, USA) containing the ap-
propriate gene of interest and a second plasmid (p2-dhfr) which
contains the dihydrofolate reductase gene, stable recombinant
cells were selected in the presence of G418 and the absence of
hypoxanthine and thymidine. Productivity was improved by
stepwise increase of the methotrexate (MTX) concentration and
two steps of subcloning by limiting dilution. Low-producing cell
lines (CHO 3D6scFv-Fc low producer and CHO HSA low
producer) were selected at 0.1 μM MTX and high-producing
cell lines (CHO 3D6cFv-Fc high producer and CHO HSA high
producer) at 0.4 μM MTX. A stable non-producing cell line
(CHO empty vector) was established by cotransfection of the
host cell line with the empty pCI-neo vector and p2-dhfr. MTX
concentration was increased to 0.1 μM.

Steady-state cultivation

Chemostat cultivations were conducted in 800-mL cell culture
bioreactors (DS0700TPSS, DASGIP, Jülich, Germany). The
inocula were expanded in spinner flasks starting from the
working cell bank. Exponentially growing cells from passage
six were used for inoculation. The initial cell concentration
was 2.5×105 cells mL−1. The cultures were maintained at
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37 °C, pH 7.0, 30 % dissolved oxygen, and an agitation speed
of 80 rpm. The medium was composed of DMEM without
glucose and Ham’s F12 (1:1) supplemented with 4 mM L-
glutamine, 0.25 % soy peptone (Quest International, Naarden,
The Netherlands), 0.1 % Pluronic F68, and a protein free
supplement (Polymun Scientific, Klosterneuburg, Austria).
After 3 days of batch cultivation, the process was switched
to continuous operation for 11 days. Fresh medium was sup-
plied at a constant flow rate to maintain a dilution rate D of 0.5
d−1. The working volume was kept constant at 400 mL using a
DASGIP level sensor. Samples for off-line monitoring were
taken once a day. D-glucose, L-glutamine, L-glutamate, and
ammonium concentration were measured with a bioprofile
analyzer (BioProfile 100 Plus, Nova Biomedical, Waltham,
MA, USA). Cell concentration was determined by counting
the nuclei of lysed cells with a Z2 Coulter Counter (Beckman
Coulter, Brea, CA, USA). Cell viability was determined by
trypan blue exclusion using a hemocytometer.

Productivity determination

The concentrations of the secreted products were determined
from the culture supernatants using sandwich ELISA assays as
previously described (Maccani et al. 2014). Briefly, 96-well
microtiter plates (Nunc MaxiSorp, Thermo Fisher Scientific,
Waltham, MA, USA) were coated with 0.33 μg mL−1 goat
anti-human IgG (γ-chain specific) antibody (I3382, Sigma-
Aldrich, St. Louis, MO, USA) to detect 3D6scFv-Fc. Affinity
purified 3D6scFv-Fc was used as a standard. Standard and
samples were applied in serially twofold dilutions, and captured
3D6scFv-Fc was incubated with 0.5 μg mL−1 horseradish per-
oxidase conjugated goat anti-human IgG (γ-chain specific) anti-
body (62–8420, Life Technologies, Carlsbad, CA, USA).
Staining was conducted using o-phenylenediamine and H2O2.
The absorption was measured at 492 nm with an infinite M1000
microplate reader (Tecan, Männedorf, Switzerland). HSA con-
centrations were determined using the Human Albumin ELISA
Quantification Set (E80-129, Bethyl, Montgomery, TX, USA)
according to the manufacturer’s instructions.

The specific product secretion rate qP (pg cell
−1 d−1) during

steady-state cultivation was calculated according to Eq (1),
where D (d−1) represents the dilution rate. VCC (cells mL−1) is
the viable cell concentration and CP (μg mL−1) the product
concentration.

qp ¼ D� Cp

VCC
� 106 ð1Þ

RNA isolation

Total RNA samples were isolated from 5×106 cells using the
Ambion TRI Reagent (Life Technologies, Carlsbad, CA,

USA) according to the manufacturer’s instructions using chlo-
roform for extraction. Yield and purity were determined using
the NanoDrop 1000 sprectrophotometer (Thermo Fisher
Scientific, Waltham, MA, USA). Only total RNA samples
with an A260/A280 ratio between 1.8 and 2.0 and an
A260/A230 ratio >2.0 were used in this study. The integrity
of the RNA samples was analyzed using the Agilent 2100
Bioanalyser together with the RNA 6000 Nano LabChip kit
(Agilent, Santa Clara, CA, USA). The RNA integrity number
(RIN) was ≥9.9 for all samples which indicates a very high
sample quality.

MicroRNA microarray

Cross-species microRNA microarray assays were conducted
as described previously (Hernandez Bort et al. 2012). Briefly,
epoxy-coated Nexterion glass slides were spotted with eight
replicates of a locked nucleic acid (LNA) probe set consisting
of 2,367 probes against human, mouse, and rat miRNAs based
on miRBase 16. Total RNA extracts of three biological repli-
cates per cell line from independent steady-state cultivations
were analyzed. Therefore, 800 ng total RNAwere hybridized
against a common reference (pooled RNA from all samples).
To label the miRNAs, the Exiqon Power Labeling Kit
(Exiqon, Vedbaek, Denmark) was used according to the man-
ufacturer’s instructions. The arrays were hybridized for 16 h at
56 °C followed by automated washing and drying with nitro-
gen using a Tecan HS 400 hybridization station (Tecan,
Männedorf, Switzerland). Slides were then scanned at
10-μm resolution and auto-gain settings using a Roche
NimbleGen MS200 scanner (Roche NimbleGen, Madison,
WI, USA).

Feature extraction was conducted using the GenePix soft-
ware (Molecular Devices, Sunnyvale, CA, USA). The
LIMMA package of R/Bioconductor was applied for back-
ground correction, normalization, and statistical analysis as
previously described (Hackl et al. 2010). The resulting p values
were corrected for multiple testing according to Benjamini
and Hochberg (Benjamini and Hochberg 1995). Raw and
normalized microarray data have been deposited in NCBI’s
Gene Expression Omnibus (GEO) database (www.ncbi.nlm.
nih.gov/geo/) and are available under accession number
GSE57023.

The software Genesis 1.7.6 (Sturn et al. 2002) was used to
conduct hierarchical clustering.

mRNA microarray

As microarray platform, the 4×44 k design fromAgilent (CA,
Santa Clara, USA) was chosen. Sixty-mer oligonucleotide
probes were designed based on the published genomic se-
quence of the CHO-K1 cell line (Xu et al. 2011). The probe set
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and array design (20,650 genes, spotted in duplicates) were
submitted to the Agilent eArray platform.

Total RNA extracts of three biological replicates per cell
line from independent steady-state cultivations were analyzed
in duplicates (dye swap). The Agilent Low Input Quick Amp
Labeling Kit was used to generate fluorescent complementary
RNA (cRNA) targets for hybridization with CHO-specific
oligonucleotide arrays. Labeling and hybridization were per-
formed according to the manufacturer’s instructions. Briefly,
200 ng of total RNA were used for reverse transcription and
the subsequent cRNA synthesis and labeling reaction with
either cyanine 3 (Cy3)- or cyanine 5 (Cy5)-labeled cytidine
triphosphate (CPT). After purification of labeled cRNA using
the RNeasy Mini Kit (Qiagen, Venlo, The Netherlands), yield
and labeling efficiency was determined using the NanoDrop
1000 sprectrophotometer (Thermo Fisher Scientific,
Waltham, MA, USA). The labeling efficiency was >22 pmol
Cy3 or Cy5 per μg cRNA for all samples. The cRNA of the
appropriate sample and the common reference (pooled RNA
from all samples) were mixed and fragmented using the
Agilent Gene Expression Hybridization Kit and transferred
to the microarray slide. Hybridization was performed at 65 °C
for 17 h. After washing, the slides were scanned at 5-μm
resolution using an Agilent microarray scanner G2565AB.

The scanned images were processed using the Agilent
Feature Extraction 11.0 software. Background correction,
normalization, and statistical analysis were performed as pre-
viously described (Graf et al. 2008). The resulting p values
were adjusted for multiple testing using the method of
Benjamini and Yekutieli (Reiner et al. 2003).

Quantitative reverse transcription PCR

MicroRNA and mRNA expressions were measured using the
miScript PCR system (Qiagen, Venlo, The Netherlands)
which allows the parallel quantification of mature miRNAs
and mRNAs. Total RNA extracts were converted into com-
plementary DNA (cDNA) using the miScript II RT Kit
(Qiagen) according to the manufacturer’s instructions.
Quantitative real-time PCR (qPCR) was performed on a
MiniOpticon real-time PCR detection system (Bio-Rad,
Hercules, CA, USA) using the miScript SYBR Green PCR
Kit (Qiagen) according to the supplier’s manual. To improve
the reliability of the assay, the expression of each miRNAwas
normalized using two internal references (cgr-miR-185-5p
and Actr5). The miRNA cgr-miR-185-5p was used as an
internal control previously (Jadhav et al. 2012), and the
mRNA Actr5 showed very stable expression in the microarray
experiment across all CHO cell lines used in this study.
Additionally, Actr5was described as a suitable internal control
gene before (Bahr et al. 2009). For mRNA quantification,
Gapdh and Actr5 were used as internal reference genes. A
20 μL qPCR reaction mix contained 10 ng cDNA and the

appropriate 10×miScript Primer Assay (Qiagen). All miScript
Primer Assays and other primers used in this study are spec-
ified in Table S1 (Supplementary material). The PCR was run
at 95 °C for 15 min and 40 cycles of 94 °C for 15 s, 55 °C for
30 s, and 70 °C for 30 s. The specificity of the reactions was
verified by analyzing the melting curve immediately after the
last amplification cycle. The results were evaluated with the
software CFX Manager 3.0 (Bio-Rad). Quantification cycle
(Cq) values were determined using the “regression” mode.
Three biological replicates (samples from three independent
cultivations) were analyzed in technical duplicates (two inde-
pendent qPCR assays). Relative expression ratios were calcu-
lated using the software REST 2009 (Pfaffl et al. 2002). The
REST 2009 algorithm uses a statistical randomization test to
determine the significance of the expression ratio as well as a
complex Taylor series to estimate the standard error (SE).

Target prediction of differentially expressed miRNAs

For miRNA target prediction, the miRWalk database (Dweep
et al. 2011) was used. Besides the miRWalk algorithm, this
database includes miRNA-mRNA interactions predicted by
DIANA-microT (version 3.0), miRanda (August 2010),
miRDB (April 2009), PicTar (March 2007), PITA (August
2008), RNA22 (May 2008), RNAhybrid (version 2.1), and
TargetScan (version 5.1). Only interactions predicted by more
than half of these programs were considered. The database
miRTarBase 4.5 (Hsu et al. 2014) was used to identify poten-
tial targets based on validated miRNA-target interactions in
human, mouse, or rat. Pearson correlation was analyzed be-
tween miRNA expression levels (qRT-PCR data) and mRNA
expression levels (microarray data). Student’s t tests were used
to identify significantly negatively correlated miRNA-mRNA
pairs. The resulting p values were corrected for multiple
testing according to Benjamini and Hochberg (Benjamini
and Hochberg 1995).

Results

Steady-state cultivation

The CHO cell lines were cultivated in a continuous process
(chemostat) to establish steady-state conditions. After a batch
phase of 3 days, the process was switched to continuous
operation with a constant dilution rate D of 0.5 d−1. The viable
cell concentration remained constant during continuous oper-
ation (Fig. 1a–e). Consequently, the specific growth rate μ
was equal to the dilution rate D. Also, the residual glucose,
glutamine, lactate, and ammonium reached constant concen-
trations (Fig. S1a–e, supplementary material), confirming the
establishment of steady-state conditions. The specific product
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secretion rates qP were considerably (eightfold) different be-
tween high and low producers but similar for 3D6scFv-Fc and
HSA (Fig. 1f). Samples for miRNA and mRNA expression
analysis were harvested on day 14 after more than five volume
changes.

The high producing cell lines had been established by
increasing the transgene copy number of the low producers
in order to reduce effects caused by clonal variation (Maccani
et al. 2014). Consequently, observed differences in miRNA
and mRNA expression profile between high and low
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Fig. 1 Time courses of steady-state cultivations. Viable cell concentra-
tion and viability of a CHO 3D6scFv-Fc low producer, b CHO 3D6scFv-
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and eCHO empty vector (non-producer). f Specific product secretion rate
qP in steady-state. Cells were cultivated in a 0.8-L cell culture bioreactor.

After 3 days of batch cultivation, the process was switched to continuous
cultivation (dilution rate D=0.5 d−1). The culture volume was maintained
at a constant level of 400 mL. Data represent mean values of three
independent cultivations (error bars SD)
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producers should predominantly be relatable to cellular pro-
cesses that are involved in the biosynthesis of the recombinant
protein including transcription, mRNA processing and trans-
lation as well as protein processing and secretion. The product
mRNA levels perfectly corresponded to the determined in-
crease of qP between high and low producers (Fig. 2), indi-
cating that there are no limitations at the stage of translation,
protein processing, or secretion. However, differential gene
expression between the high and low producers may reflect
the adaptations necessary for the cell to handle the higher
recombinant protein load.

MicroRNA expression screening by microarray analysis

Expressed and differentially regulated miRNAs were initially
identified using a miRNA microarray platform containing
probes against 2,367 mature miRNAs from human, mouse,
and rat. In total, 320 miRNAs were significantly expressed
(signal intensity>background intensity+2×standard devia-
tion) in the five CHO cell lines. For these miRNAs, log2 fold
changes against a common reference pool were calculated and
the distribution was analyzed (Fig. 3a). The results showed
increased miRNA levels in the producing cell lines compared
to the non-producer, where the shift was statistically signifi-
cant (Student’s t test, p<0.05) for 3D6scFv-Fc low producer
and 3D6scFv-Fc high producer. Comparing high producers
with low producers as well as producers with non-producer, a
total of 83 non-redundant miRNAs were significantly differ-
entially expressed (adj. p<0.05 and fold change>1.5) in at
least one of the comparisons. These miRNAs were analyzed
using hierarchical clustering (Fig. 3b). The heat map shows
that 3D6scFv-Fv expression predominantly led to an upregu-
lation of miRNA expression (cluster D and E). In contrast, a
large fraction of miRNAs was downregulated in both HSA

producers (clusters A, B, and C). Especially, the miRNAs of
cluster A were highly affected by HSA expression.
However, comparing the high producers with the low
producers, no significantly differentially expressed
miRNA (adj. p<0.05 and fold change>1.5) was com-
monly upregulated or downregulated for both model
proteins (Fig. 3c). Interestingly, more miRNAs were
significantly downregulated than upregulated between
the individual high and low producers, although we
observed a global increase of miRNA levels in the
producing cell lines relative to the non-producer.
Between high producers and non-producer, five signifi-
cantly differentially expressed miRNAs were commonly
upregulated and one was commonly downregulated
(Fig. 3d).

Differential miRNA expression by qRT-PCR

A total of 14 mature miRNAs from the microarray study were
selected for qRT-PCR. The selection was based on the ob-
served most significantly differentially expressed miRNAs
between high and low producers as well as between the
individual producers and the non-producer including the
miRNAs found to be commonly upregulated or downregulat-
ed between both high producers and the non-producer. Two of
them were human-specific miRNAs (hsa-miR-936 and hsa-
miR-3175); one was mouse-specific (mmu-miR-711), and the
others showed a 100 % sequence identity between the known
mature mouse, human, rat, and Chinese hamster miRNAs
according to miRBase 20 (Kozomara and Griffiths-Jones
2014). However, only the 11 conserved miRNAs could be
reliably detected by qRT-PCR (Fig. 4). The mature sequences
of hsa-miR-936, hsa-miR-3175, and mmu-miR-711 could
also not be found in the genome of CHO-K1 (Xu et al.
2011) and the Chinese hamster (Brinkrolf et al. 2013; Lewis
et al. 2013) by BLAST search (100 % identity) using the
Chinese hamster genome database (Hammond et al. 2012),
indicating that those Chinese hamster RNAs leading to a
signal on the microarrays are different from the human and
mouse miRNAs. In addition, there are no similar Chinese
hamster miRNAs which are included in miRBase 20 that
could have cross-hybridized to the microarray probes of hsa-
miR-936, hsa-miR-3175, and mmu-miR-711.

The miRNAs let-7b-5p and let-7c-5p were upregulat-
ed in all producing cell lines compared to the non-
producer, and the expression levels correlated with the
productivity. Comparing the 3D6scFv-Fc high and low
producers, miR-99a-5p was significantly (p<0.005 and
fold change>1.5) upregulated and miR-100-5p, miR-
125b-5p, and miR-19a-3p were significantly downregu-
lated. Of these, miR-100-5p and miR-125b-5p showed
the inverse effect between HSA high and low producers,
where they were significantly upregulated.
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independent steady-state cultivations (error bars SE)
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Identification of potential miRNA-mRNA interactions

In order to generate hypotheses about the biological function of
the 11 conserved miRNAs analyzed by qRT-PCR, potential
target mRNAs were determined based on computational target
prediction algorithms and experimentally validated targets,
combined with the identification of miRNA-mRNA pairs that
show a negatively correlated expression profile. Computational
miRNA target prediction was conducted using miRWalk
(Dweep et al. 2011), DIANA-microT (Maragkakis et al.
2009), miRanda (John et al. 2004), miRDB (Wang 2008),

PicTar (Krek et al. 2005), PITA (Kertesz et al. 2007), RNA22
(Miranda et al. 2006), RNAhybrid (Rehmsmeier et al. 2004),
and TargetScan (Lewis et al. 2005). To reduce the false positive
rate, only mRNAs predicted by five or more of these nine
algorithms were considered. In a second approach, potential
targets were obtained from miRTarBase 4.5 using the experi-
mentally validated miRNA-mRNA interactions in human,
mouse, or rat.

The mRNA microarray experiment revealed a total of
2,842 genes which were significantly differentially expressed
(adj. p<0.05 and fold change>1.5) in at least one comparison

Fig. 3 Comparative microRNA profiling using microarray analysis.
Total RNA samples of five CHO cells lines from steady-state cultivations
(n=3) were analyzed. 3D6_L, CHO 3D6scFv-Fc low producer; 3D6_H,
CHO3D6scFv-Fc high producer; HSA_L, CHO HSA low producer;
HSA_H, CHO HSA high producer; EV, CHO empty vector (non-pro-
ducer). aDensity plot of the log2 fold changemiRNA expression between
each cell line and a common reference pool (mean values, n=3). b
Hierarchical clustering of 83 significantly differentially expressed mature
miRNAs (adj. p<0.05 and fold change>1.5) based on log2 fold changes

between producers and non-producer. Commonly and exclusively upreg-
ulated or downregulated miRNAs were determined using Venn diagrams.
The number of significantly differentially expressed miRNAs of c
3D6scFv-Fc high producer versus 3D6scFv-Fc low producer and HSA
high producer versus HSA low producer and d 3D6scFv-Fc high pro-
ducer versus non-producer and HSA high producer versus non-producer
are illustrated. upward arrow upregulated, downward arrow
downregulated
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between the five cell lines analyzed in this study. Pearson
correlation coefficients (PCC) were computed for the 11 dif-
ferentially expressed miRNAs (expression levels from qRT-
PCR) and the 2,842 differentially expressed mRNAs (expres-
sion levels from microarray experiment). Identified potential
miRNA-mRNA interactions that showed a negative correla-
tion (PCC<−0.5 and adj. p<0.05) are listed in Table 1.
Fisher’s exact test was used to analyze whether negatively
correlated targets are significantly (p<0.05) enriched. For the
computationally predicted targets, no significant enrichment

was observed (Table 2). Regarding the experimentally vali-
dated targets, negatively correlated ones were significantly
enriched for miR-21-5p and miR-99a-5p (Table 2). Kernel
density plots were computed to visualize and compare the
distribution of the PCCs for validated targets, predicted
targets, and total differentially expressed mRNAs
(Fig. S2, supplementary material). Generally, a shift to
negative PCCs was observed. However, the shifts were
only statistical significant (Student’s t test, p<0.05) for
the validated targets of miR-10b-5p, miR-21-5p, and
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Fig. 4 Differentially expressed miRNAs determined by qRT-PCR.
3D6_H, CHO 3D6scFv-Fc high producer; 3D6_L, CHO 3D6scFv-Fc
low producer; HSA_H, CHO HSA high producer; HSA_L, CHO HSA
low producer; EV, CHO empty vector (non-producer). qRT-PCR data
were normalized using two endogenous controls (miR-185-5p and

Actr5). The software REST 2009 was used to calculate relative expres-
sion ratios and for statistical analysis (*p<0.05, **p<0.01, ***p<0.005).
Data represent mean values of three independent steady-state cultivations
(error bars SE)
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miR-125b-5p as well as the predicted targets of let-7c-
5p. Hence, these results indicate a considerable degree

of false positives within the discovered miRNA-mRNA
interactions.

Discussion

Comparable conditions by steady-state cultivation

A prerequisite for a comparative physiological analysis of
different cell lines is the generation of samples under compa-
rable and defined conditions in order to obtain reproducible
and meaningful information. In simple batch cultures, the
physicochemical conditions are very dynamic and have a
considerable impact on the cell’s transcriptome (Hernandez
Bort et al. 2012; Koh et al. 2009). Koh et al. observed
significant changes in miRNA expression even within the
exponential growth phase of batch cultivated HEK-293 cells.
This clearly shows that in batch cultivations, the time of
sampling is crucial for the outcome of omics studies that
compare different cell lines. Consequently, the chemostat with
its defined and constant environment is the ideal setup for
such experiments (Hoskisson and Hobbs 2005). Chemostat
cultures have been used to grow CHO cells under steady-state
condition for more than two decades (Hayter et al. 1992).
However, as the standard industrial bioprocess is fed-batch,
steady-state cultivation was not applied in recent CHO omics
studies.

Product dependency of miRNA expression profile

The most striking observation in our study was the divergence
in differentially regulated miRNAs between the cell lines
producing different proteins. We observed a general increase
of miRNA expression levels in the producing cell lines, which
indicates that miRNAs play an important role in the regulation
of processes involved or caused by recombinant protein syn-
thesis and secretion. Several miRNAs were differentially
expressed comparing high, low, and non-producing CHO cell
lines. However, significant differences in miRNA expression
were predominantly seen between producers and non-
producers as well as between 3D6scFv-Fc and HSA pro-
ducers, rather than between high and low producers.
Furthermore, no significantly differentially expressed
miRNA was commonly upregulated or downregulated com-
paring high and low producers for both model proteins. These
results suggest that the reaction of CHO cells to recombinant
protein expression strongly depends on the particular product,
which would also explain the low level of consensus observed
between previously published studies investigating the tran-
scriptome of different CHO production cell lines in relation to
high productivity (Vishwanathan et al. 2014). Different pro-
teins require specific cellular aid with folding, glycosylation,

Table 1 Identified negatively correlated potential targets of differentially
expressed miRNAs

Mature
miRNA

Potential target mRNAsa

let-7b-5p Adam8, Ammecr1l, Atad3a, Cpsf3l, Ddx26b, Ddx41, Dmd,
Dnmbp, Eef1e1, Fam49b,Gltpd1, Iars, Igf2bp3, Lingo1,
Lman2, Mars2, Nid1, Prss22, Ptgs2, Slc30a4, Syncrip,
Taf5, Tmem65, Tmprss11f, Txndc5, Zadh2, Zbtb5

let-7c-5p Adam8, Ammecr1l, Atad3a, Bzw1, Col4a1, Ddx18, Ddx26b,
Fkbp10, Gltpd1, Golt1b, Iars, Igf2bp3, Jarid2, Lingo1,
Lman2,Mars2, Pld3, Plxna2, Prss22, Rb1, Slc30a4, Slk,
Stk24, Syncrip, Tmprss11f, Txndc5, Vps25, Zbtb5

miR-100-5p –

miR-10b-5p Acly, Ap3m1, Arhgap18, Col4a1, Ctdspl, Eif1, Glod4,
Gpc1, Hivep2, Idh3a, Igf2r, Igfbp4, Klhdc7a, Lrrc16a,
Lrrc59, Mboat1, Nkiras2, Ormdl1, Ppp1r9b, Rap2a,
Rhobtb2, Sdc1, Slc25a30, Stk4, Tox4, Txndc16, Ube2z

miR-125b-
5p

6430548M08Rik, Ak3, Akap1, Ankrd13b, Arrb1,
BC003266, Cd320, Cln6, Cspg4, Cyp2c55, Cyyr1,
Dusp3, Dynlt3, Ebpl, Fbn1, Fbxw4, Fgfr2, Gbf1, Ghdc,
Gpc6, Gsn, Hspd1, Icmt, Ier3, Ilvbl, Jub, Ldb1, Lss,
M6pr, Mamdc2, Map3k1, Mgat5, Myt1, Ngly1, Nup50,
Osgepl1, Pde1a, Phex, Ppwd1, Rere, Sept3, Slc27a6,
Snx8, St8sia4, Stat5b, Taf15, Thop1, Tmem180,
Tmem201, Tnfsf4, Tspan9, Zmym3

miR-193a-
3p

Abcc3, Acpl2, Ap2b1, Avpi1, Bicd2, Ccdc134, Cyb561d2,
Dnajc7, Faf2, Fzd4, Gnat2, Igf2bp3, Igf2r, Ing5,
Kdelc1, Kras, Lamc2, Lrrc16a, Mmp14, Nkiras2,
Npepps, Phf21b, Slc4a3, Slmap, Spsb4, Tmed3, Vps37b

miR-19a-3p Abhd10, Ahrr, Atp10a, Bmp2k, Depdc1b, Dsel, Icmt,
Mdfic, Mid1ip1, Pde5a, Pdik1l, Pls3, Rras2, Snx7,
Stx12, Timp2, Tmem50a, Zeb2

miR-21-5p Aftph, Alx1, Ank2, Ankrd28, Arhgap24, Atp11b, B3galnt1,
Bmpr1b, Boc, Ccdc117, Cd44, Cryab, Ctdsp2, Dmd,
Dock4, Dse, Dync1li2, Elf2, Elovl7, Entpd5, Fbxl17,
Fubp1, Glcci1, Gng12, Gpam, Grsf1, Hoxa9, Icam1,
Mbnl1, Mthfd2, Nbea, Nek1, Nfib, Nkiras1, Pdcd4,
Phf20l1, Pias3, Pkd2, Postn, Ppap2a, Ptx3, Pura,
Rabgap1l, Rbms3, Rnf11, Rnf167, Rpa2, Rufy3, Sash1,
Smap2, Srpk2, Taf5, Timp2, Trim33, Ttc33, Uso1,
Wwc2, Zbtb38, Zfp110, Zfp112, Zfp367

miR-221-3p 2900011O08Rik, Ank2, Ankrd28, Bmp2k, Bmpr1a,Capn7,
Carhsp1, Casp9, Ccnd2, Cd44, Cdkn1b, Cxcr7, Eaf1,
Eif4g3, Elavl2, Eya4, Fhl1, Figf, Glud1,Gnptab,
Gpbp1, Icam1, Mbnl1, Mdfic, Nkiras1, Nt5dc2, Pak1,
Pdik1l, Phf21a, Pkd2, Plscr4, Ptx3, Rfx7, Rpl15,
Sema3b, Sema3e, Sh3d19, Shmt2, Slc25a12, Slc33a1,
Slc4a7, Sqstm1, Ssbp2, Stmn1,Tapbp, Tmem140,
Tmem176b, Wwc2

miR-350-3p –

miR-99a-5p Ap2b1, Apex1, Arhgap22, Col4a1, Ctdspl,Ddhd1,Ddx18,
Lman2, Nfe2l1, Ormdl1, Rb1, Scpep1, Serpine1,
Smarca5, Sucla2, Trib1, Zfp689

a Computationally predicted miRNA targets, experimentally validated
miRNA targets in human, mouse, or rat (underlined), or determined by
both methods (bold)
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and bonding depending on their structure. The exerted stress
may well initiate differential responses and consequently af-
fect the regulation of both miRNAs and mRNAs that provide
the cells with the capacity to handle the various types of stress.
As the mRNA expression of the product genes correlated well
to the cell-specific productivity, it appears that the cellular
protein production machinery was able to adapt to these
individual requirements without running into limitation.
Nevertheless, the contribution of effects caused by clonal
variation is unknown and cannot be neglected.

Impact of confirmed miRNAs

For those differentially regulated miRNAs that were con-
firmed by qRT-PCR, some consensus could be found in
similar previously published studies. In an earlier work, we
compared the miRNA expression of an Epo-Fc and an anti-
body producing cell line to the respective parental CHO cell
line (Hackl et al. 2011). We observed an upregulation of miR-
10b-5p and downregulation of miR-21-5p in recombinant cell
lines, which is in compliance with our results of the HSA
producers but not for the 3D6scFv-Fv producers.
Additionally, we could already show that miR-21-5p overex-
pression reduces specific productivity (Jadhav et al. 2012).
Consequently, this suggests that a knockdown of miR-21-5p

could increase specific productivity. As one of the best studied
miRNAs, miR-21-5p has been linked to cell proliferation,
apoptosis, and migration (Krichevsky and Gabriely 2009)
and even cellular longevity (Dellago et al. 2013). Like miR-
21-5p, miR-10b-5p was described as an oncogenic miRNA
with a pro-proliferative and anti-apoptotic function (Lin et al.
2012).

In another study, Lin et al. (2011) profiled miRNA expres-
sion in four recombinant CHO cell lines expressing the same
human IgG and compared them with the parental DG44 cell
line. In compliance with our results, they found miR-221-3p
being significantly downregulated in the recombinant cell
lines. They also observed a downregulation of miR-125b-5p
in two clones, as observed in the 3D6scFv-Fc high producer in
our study. However, they detected opposed effects for miR-
19a-3p and let-7b-5p. In human hepatocellular carcinoma
cells, miR-221-3p was found to control cyclin-dependent
kinase inhibitor 1B (p27Kip1) and cyclin-dependent kinase
inhibitor 1C (p57Kip2) expression (Fornari et al. 2008).
Induction of G1-specific growth arrest by conditional overex-
pression of p27Kip1 resulted in increased specific productivity
in CHO (Meents et al. 2002); however, transient overexpres-
sion of miR-221 had no significant effect on growth or pro-
ductivity (Jadhav et al. 2012). This might indicate that miR-
221 expression changes in response to cellular requirements,

Table 2 Enrichment analysis of negatively correlated miRNA targets

miRNA Number of negatively
correlated
differentially
expressed genesa

Number of
differentially
expressed targets

Number of
negatively
correlated
differentially
expressed targets

Odds ratio (OR)b p value (Fisher’s exact test)c

Predicted Validated Predicted Validated Predicted
targets

Validated
targets

Predicted
targets

Validated
targets

let-7b-5p 237 169 205 19 16 1.392 0.931 0.200 0.896

let-7c-5p 314 162 19 24 5 1.400 2.874 0.158 0.052

miR-100-5p 11 17 44 0 0 – – – –

miR-10b-5p 860 57 28 19 12 1.152 1.728 0.663 0.153

miR-125b-
5p

514 316 56 50 11 0.851 1.107 0.353 0.727

miR-193a-
3p

710 93 0 28 0 1.293 – 0.275 –

miR-19a-3p 243 200 10 18 0 1.058 – 0.794 –

miR-21-5p 825 122 115 41 46 1.237 1.630 0.309 0.016

miR-221-3p 647 159 42 47 14 1.423 1.696 0.053 0.137

miR-350-3p 0 264 0 0 0 – – – –

miR-99a-5p 925 10 24 6 13 3.107 2.448 0.088 0.030

a 2,842 differentially expressed genes in total
b Indicates the degree of enrichment/depletion. OR>1, negatively correlated differentially expressed targets are overrepresented. OR<1, negatively
correlated differentially expressed targets are underrepresented
c Significance of enrichment/depletion
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but forced manipulation of its expression does not by itself
change the phenotype. miR-125b-5p can act as tumor sup-
pressor or as oncogene, and it was shown to promote apopto-
sis by suppressing the expression of Bcl-2 family members
(Gong et al. 2013).

All miRNAs described above, have been associated with
cell growth and/or apoptosis, so that their relation to produc-
tivity may only be indirect and therefore difficult to interpret.
Hence, further evaluation of the identified target miRNAs is
required.

The challenge of high-throughput miRNA target
identification

Identifying the biological function of a miRNA is still a major
challenge. Due to the complexity and diversity of miRNA-
mRNA target interactions, functional screenings using biolog-
ical methods are very labor-intensive and time-consuming.
Hence, reliable computational tools for the prediction of in-
teractions between miRNAs and target mRNAs would be a
huge benefit. But the prediction of targets is very challenging
as miRNAs recognize specific sequences with only partial
complementarity. However, although perfect pairing between
nucleotides 2–7 (seed region) and the target site is the most
common motif in animals (Pasquinelli 2012), also imperfect
seed pairing compensated by extensive pairing of the 3′ end
(Vella et al. 2004) and centered pairing (Shin et al. 2010) have
been described. Numerous algorithms based on seed pairing,
evolutionary conserved sites, secondary structure of the 3′
UTR, and thermodynamic calculations have been developed
for computational target prediction. Many of these algorithms
consider cross-species conservation to reduce false positive
rates (Maziere and Enright 2007). However, by applying a
novel biochemical approach known as high-throughput se-
quencing of RNA isolated by cross-linking immunoprecipita-
tion (HITS-CLIP), it was shown that a considerable fraction
(40 %) of all functional target sites is not conserved
(Ellwanger et al. 2011). The lack of agreement between the
results of different computational methods as well as the high
false positive and false negative rates clearly show the com-
plexity of target prediction in mammalian cells (Liu et al.
2014; Ritchie et al. 2009). In CHO research, the reliability of
the currently available target prediction tools is additionally
impaired as the CHO or Chinese hamster genome has not been
included in any of them yet. Hence, the results rely on an
assumed high degree of conservation of miRNA and target
mRNA interactions between Chinese hamster and mouse, rat,
or human.

In mammalian cells, various studies suggest that miRNAs
predominantly act by decreasing target mRNA levels (Baek
et al. 2008; Guo et al. 2010; Hendrickson et al. 2009). This
supports the frequently used approach of correlating miRNA
and mRNA expression levels to identify negatively correlated

pairs, which we also applied here. We analyzed whether
negatively correlated miRNA-mRNA pairs are enriched with-
in computationally predicted and experimentally validated
targets. However, a statistically significant enrichment could
only be observed within the validated targets for two of
the 11 analyzed miRNAs. This approach also assumes
that the target mRNA is predominantly regulated by the
miRNA and not at a different stage of gene expression.
In addition, it has been shown that most miRNAs are
only discernibly active above a certain expression level
(Mullokandov et al. 2012). Furthermore, there are sev-
eral factors that can affect miRNA-binding efficiency to
a specific target mRNA, including competition with
RNA-binding proteins (Kedde et al. 2007), miRISC
cofactors (Neumüller et al. 2008) or modification of
argonaute proteins (Johnston and Hutvagner 2011). In
addition, mRNAs can contain multiple target sites for a
single miRNA and also target sites for several miRNAs
which suggests even more complex regulatory mecha-
nisms by miRNAs (Liu et al. 2014). Together, this
indicates that many targets most likely remain undiscov-
ered by the simple assumption of an inverse relationship
between the expression levels of a miRNA and its target
mRNAs.

In conclusion, this is the first report of miRNA expression
data of recombinant CHO cell lines cultivated under steady-
state conditions. Cell lines that express heterologous proteins
appear to have higher levels of mature miRNAs in general,
which suggests that miRNAs play a crucial role in recombi-
nant CHO cell lines. However, comparing the miRNA expres-
sion profiles of different CHO cell lines, both from this study
and published results, revealed little consensus. This indicates
that the reaction of CHO cells to the overexpression of heter-
ologous proteins is strongly protein and/or clone dependent.
Hence, cell engineering approaches to improve recombinant
protein production may also be product- and/or clone-specific
and not generally applicable.

Identifying miRNAs and their target mRNAs is crucial for
a better understanding of biological processes in CHO cells,
and there is no doubt that high-throughput miRNA and
mRNA profiling can deliver valuable information.
Additional results from proteome analyses would also be
beneficial to obtain a comprehensive picture (Baek et al.
2008). As the regulatory mechanisms of miRNAs are very
complex and today’s computational target prediction tools are
inefficient, it is still a major challenge to retrieve correct and
meaningful results from high-throughput omics data. Hence,
reliable computational miRNA target prediction tools that also
include the CHO genome are urgently needed. This also
requires thoroughly defined 3′ UTR boundaries in the CHO
genome as this highly influences the outcome of miRNA
target prediction (Ritchie et al. 2009). In addition, experimen-
tally validated miRNA targets in CHO cells need to be
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collected in order to finally facilitate functional analysis of
high-throughput miRNA expression data.
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