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1  Introduction

The advantage of Chinese hamster ovary (CHO) cells over
microbial production systems is that they can produce
proteins with human-like post translational modifications
[1]. Yet the space/time yield of recombinant proteins pro-
duced in CHO cells is at least ten–fold lower when com-

pared to microbial hosts [2]. Different bioprocess [3–5] and
medium optimizations [2, 6, 7] were developed and imple-
mented to overcome this drawback. Another approach
has been to directly improve the host cell by genetically
engineering cellular functions such as apoptosis [8–11],
productivity [12–14], and metabolism [15–17]. Given the
wealth of published data in this field, the references  given
above are illustrative of the strategies employed, but not
an exhaustive survey of the literature. In this context,
microRNAs (miRNAs) are increasingly considered as
promising tools for CHO cell line development as they
were shown to be essential regulators of cellular functions
that support cell cycle progression and protein expression
(for example [18–20]) .

The biogenesis of this class of small non-coding
RNAs, with a length of approximately 22 nucleotides, is
a complex multi-step process that relies on coordinated

Technical Report

Endogenous microRNA clusters outperform chimeric sequence
clusters in Chinese hamster ovary cells

Gerald Klanert1,2, Vaibhav Jadhav1, Konstantina Chanoumidou1 , Johannes Grillari1, Nicole Borth1,2

and Matthias Hackl1

1 Department of Biotechnology, Boku University Vienna, Austria
2 ACIB GmbH, Austrian Centre of Industrial Biotechnology, Graz, Austria

MicroRNAs (miRNAs) are small non-coding RNAs (~22 nucleotides) which regulate gene expres-
sion by silencing mRNA translation. MiRNAs are transcribed as long primary transcripts, which
are enzymatically processed by Drosha/Dgcr8, in the nucleus, and by Dicer in the cytoplasm, into
mature miRNAs. The importance of miRNAs for coordinated gene expression is commonly accept-
ed. Consequentially, there is a growing interest in the application of miRNAs to improve pheno-
types of mammalian cell factories such as Chinese hamster ovary (CHO) cells. Few studies have
reported the targeted over-expression of miRNAs in CHO cells using vector-based systems. These
approaches were hampered by limited sequence availability, and required the design of “chimeric”
miRNA genes, consisting of the mature CHO miRNA sequence encompassed by murine flanking
and loop sequences. Here we show that the substitution of chimeric sequences with CHO-specif-
ic sequences for expression of miRNA clusters yields significantly higher expression levels of the
mature miRNA in the case of miR–221/222 and miR–15b/16. Our data suggest that the
Drosha/Dgcr8-mediated excision from primary transcripts is reduced for chimeric miRNA
sequences compared to the endogenous sequence. Overall, this study provides important guide-
lines for the targeted over-expression of clustered miRNAs in CHO cells.

Keywords: Chimeric sequence · CHO cell · Endogenous miRNA · MicroRNA engineering · MiRNA cluster

 See accompanying commentary by Baik and Lee DOI: 10.1002/biot.201300503

Correspondence: Dr. Matthias Hackl, Department of Biotechnology, 
Boku University Vienna, Muthgasse 18, 1190 Vienna, Austria
E-mail: matthias.hackl@boku.ac.at

Abbreviations: 3’UTR, 3’ untranslated region; CHO, Chinese hamster ovary;
CMV, cytomegalovirus; emGFP, emerald green fluorescent protein;
 miRNA/miR, microRNA; pri-miRNA/pri-miR, primary microRNA; pre-miRNA,
precursor microRNA; RT- –qPCR, quantitative real time – polymerase chain
reaction; RISC, RNA inducing silencing complex; shRNA, short hairpin RNA

Biotechnology
Journal

Received 18 JUL 2013
Revised 18 OCT 2013
Accepted 28 NOV 2013
Accepted 
article online 10 DEC 2013

Supporting information 
available online

http://dx.doi.org/10.1002/biot.201300503


© 2014 The Authors. Biotechnology Journal published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim 539

www.biotecvisions.comwww.biotechnology-journal.com

Biotechnology
Journal Biotechnol. J. 2014, 9, 538–544

action of several enzymes and RNA binding proteins.
First, primary miRNA transcripts (pri-miRNAs), which
are called miRNA clusters when they give rise to more
than one mature miRNA, are long single-stranded RNA
molecules that are usually generated by RNA poly-
merase  II or occasionally by RNA polymerase  III. Pri-
miRNAs from intergenic regions are processed by the
Drosha/DGCR8 protein complex, which cleaves the
RNA to form 50–70 nt long RNAs exhibiting a charac-
teristic RNA-secondary structure consisting of a dsRNA
region connected by a short loop sequence. These inter-
mediate forms of miRNAs are termed precursor-miRNAs
(pre-miRNAs), but are often referred to as “hairpins” or
“stem-loops”. The hairpins are exported into the cyto-
plasm where the RNase-III enzyme Dicer catalyses the
production of two largely complementary mature miR-
NAs that form a duplex. One or sometimes even both
strands are selectively incorporated into the RISC com-
plex and used as guides to scan for mRNAs with com-
plementary sequences. Once a target is bound to the
protein-miRNA complex, it is either degraded or trans-
lationally repressed [20–24]. Despite the small size and
principal ease of over-expression of  miRNAs, their bio-
genesis mechanism is complex, requiring well charac-
terized tools to achieve stable over-expression [25, 26] or
knockdown in mammalian cells [27, 28].

With respect to CHO cells, the identification and
annotation of the miRNA transcriptome [29, 30] allowed
the use of mature endogenous miRNA sequences (CHO-
sequences in contrast to orthologous sequences from
human, mouse, or rat) to study their biological effect.
These gain-of-function studies employed either trans-
fection of synthetic mature miRNA mimics [31], or plas-
mid encoded pre-miRNAs, that were pieced together
from mature CHO miRNAs and ectopic flanking and
loop sequences from mouse (“artificial chimeric miRNA
construct”) [32]. These gain-of-function studies needed
no information on the genomic location or hairpin struc-
ture of miRNAs and could be rapidly performed using
DNA synthesis. As this technology had been developed
for construction of short hairpin (shRNA) for gene
knockdown in a variety of cellular systems, its use for
miRNA engineering in CHO was an obvious choice [26].
Soon after the publication of the CHO genome in 2011
[33], pre-miRNA sequences and the respective genom-
ic loci were published [34], making it possible to ampli-
fy and clone endogenous pri–miRNAs and to use them
for cell line engineering (“endogenous miRNA con-
struct”).

In the following study we compare both constructs
for the expression of two different miRNA clusters, 
miR-15b-16 and miR-221-222. Our data clearly indicate
that endogenous miRNA constructs are better suited 
for expression of miRNA clusters than artificial con-
structs.

2  Material and methods

2.1  Cell culture

A previously described recombinant serum- and L-gluta-
mine-free suspension production cell line CHO DUKXB11
EpoFc 14F2 [35, 36] was cultivated in CD CHO medium
(Gibco®, Carlsbad, CA, USA) supplemented with 0.19 μM
Methotrexate and 0.2% Anti-Clumping Agent (Gibco) in
a shaker-incubator at 37°C, 7% CO2 and 140  rpm.

2.2  Genomic DNA isolation

gDNA was isolated using the DNeasy® Blood & Tissue Kit
(Qiagen, Germany) according to the manufacturer’s pro-
tocol. In brief, 5  ×  106 cells were harvested and resus-
pended in DPBS no calcium, no magnesium (PAA, Aus-
tria) including proteinase K. Buffer AL was added and the
samples were incubated at 56°C for 10 minutes. Ethanol
was added and the suspension was filtered through the
DNeasy mini spin column by centrifugation. After wash-
ing with Buffer AW1 and AW2, the membrane was dried
and the DNA was resuspended by the addition of 200 μL
Buffer AE followed by a centrifugation step. The quality
and quantity of the gDNA were determined by UV-VIS
spectrophotometry (Nanodrop ND–1000 spectrophotome-
ter, Thermo Scientific Inc., Waltham, MA, USA).

2.3  Cloning of miRNA cluster expression plasmids

The chimeric miR-15b/16-2 and miR-221/222 clusters
were created by concatenation of miRNA expression
plasmids with artificial miRNA constructs (Fig. 1) as pre-
viously described [26, 32]. In short, the chimeric miRNAs,
consisting of the mature CHO miRNA sequences with
restriction sites on either end, and an optimized murine
loop sequence (Supporting information, Table  1), were
cloned into the 3’ untranslated region (3’UTR) of emerald
green fluorescent protein (emGFP) located in the
 pcDNA6.2–GW/EmGFP–miR vector (BLOCK–iTTM Pol  II
miR RNAi Expression Vector Kit, Invitrogen Inc., Carls-
bad, CA, USA), already containing artificial flanking
regions. One of the two corresponding chimeric cluster
miRNAs was cut out, including the artificial flanking
regions, and inserted into the plasmid with the other
chimeric cluster miRNA for artificial cluster generation
(Fig. 1) according to the manufacturer’s instructions.

For endogenous miRNA-cluster construct generation,
the relevant gDNA regions were amplified by polymerase
chain reaction (PCR) using primers located in the flanking
regions at least 20 bp from the outermost miRNAs of each
cluster (Fig. 1A, Supporting information, Table S1). The
resulting PCR products were cloned into the same region
of the pcDNA6–GW/EmGFP–miR vector (Fig. 1B), and the
accuracy of the insertion and the sequence were con-
firmed by conventional sequencing.
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2.4  Transfection

Nucleofection was performed using the Amaxa Nucleo-
fector I/program H–14 and the Amaxa cell line nucleofec-
tor kit V (Lonza Group Ltd., Switzerland). 107 cells in expo-
nential growth phase were harvested and resuspended in
82 μL of Cell Nucleofection Solution V supplemented with
18 μL supplement I and 10 μg of the respective endotox-
in-free plasmid. The same plasmid without insert was
used as negative control. The solution mixtures were
transferred into a cuvette and nucleofected. After trans-
fection, 2  mL of pre-warmed media was added to the
cuvette and the whole solution was transferred into a 
125-mL shaking flask (Corning®, Life Sciences, Tewks-
bury, MA, USA) containing 58 mL of pre-warmed media.
Immediately after the transfer, the cells were divided into
2 × 30 mL aliquots generating two technical replicates.

Cells were incubated for 2  hours at 37°C, 7% CO2 and
humidified air without shaking for recovery. Subsequent-
ly, culture flasks were transferred into the shaking incu-
bator at 37°C, humidified air containing 7% CO2 and con-
stant shaking at 140 rpm.

2.5  RNA isolation

Total RNA samples were collected, using TRI® reagent
(Sigma-Aldrich, St. Louis, MO, USA) according to the
manufacturer’s protocol, 48 and 96 hours after transfec-
tion. In brief, up to 5 × 106 viable cells were harvested, re-
suspended and homogenized in 0.5 mL of TRI® reagent.
0.1 mL of chloroform was added and the mixtures were
centrifuged at 4°C for phase separation. The upper, aque-
ous phases were mixed with isopropanol and centrifuged
for RNA precipitation and pelleting. The pellets were
washed with 75% ethanol and then air-dried. After re-sus-
pension in 25 μL of nuclease free water, the quantity and
quality were determined by the NanoDrop  ND–1000
Spectrophotometer (Thermo Scientific). Only RNA sam-
ples with a 260/280 and a 260/230 ratio of 2.0–2.1 and
1.8–2.2, respectively, were used.

2.6  Flow cytometry

Cells were analyzed 48 hours after transfection using the
Gallios Cytometer (Beckman Coulter Inc., Brea, CA, USA).
A forward/side scatter plot was used to discriminate the
living from the dead cells. At least 1 ×104 cells were excit-
ed by a 488 nm argon laser and the emitted signals were
collected by a 525/40 BP filter.

2.7  Quantitation of mature miRNA levels

Mature miRNA levels were determined by quantitative
real-time PCR (RT-qPCR) using the TaqMan® MicroRNA
Assays (Applied Biosystems, Carlsbad, CA, USA). In gen-
eral, cDNA was generated out of 10 ng total RNA in 10 μL
reaction volumes via the TaqMan® MicroRNA reverse
transcription kit (Applied Biosystems) according to 
the manufacturer’s protocol. The kit includes the Multi-
scribeTM Reverse Transcriptase and a specific reverse-
transcription primer against each miRNA. The 10  μL 
RT-qPCR mix consisted of the generated cDNA, the 
TaqMan® Universal PCR Master Mix (Applied Biosys-
tems) and the respective 20× TaqMan MicroRNA Assay
(Applied Biosystems, TM000390, TM000391, TM000524,
TM000525, TM002271). Quadruplets of each cDNA sam-
ple were used for the PCR, performed on the Rotor-Gene-
Q (QIAGEN). The expression levels of each mature
 miRNA relative to the cgr-miR-185-5p [32], an endoge-
nous control, were determined using the 2–ΔΔCT method
[37]. Average fold differences in the transcript levels were
determined by comparison against the negative control
transfection.
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Figure 1. Schematic representation of endogenous and artificial constructs
for over-expression of microRNA clusters. (A) Endogenous mir-221/222
was PCR amplified from CHO-K1 genome, using primers 70 nt up and
downstream of the genomic location. Primers contained restriction sites,
which were used for cloning the sequence into a pcDNA 6.2 expression
vector containing emGFP. Artificial constructs of ~60 nucleotides are
composed of CHO-specific mature miRNA sequences (solid lines) as well
as the flanking and loop sequences of mir-155 (dotted lines). Artificial
mir-221 and mir-222 were synthesized individually and cloned into the
pcDNA 6.2 vector using restriction sites as indicated by black arrows.
(B) A schematic of the pcDNA 6.2 expression vector used in this study,
with CMV-controlled emGFP expression and microRNA cloning site
 contained in the 3’UTR of emGFP. 



© 2014 The Authors. Biotechnology Journal published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim 541

www.biotecvisions.comwww.biotechnology-journal.com

Biotechnology
Journal Biotechnol. J. 2014, 9, 538–544

2.8  Quantitation of primary miRNA transcripts 
and GFP

800 ng of DNase I (Fermentas, Waltham, MA, USA) treat-
ed total RNA of each sample were denatured for 2 minutes
at 72°C and then put on ice. cDNA was generated by the
DyNAmo cDNA Synthesis Kit (Thermo Scientific, Pitts-
burgh PA), consisting of the M-MuLV RNase H+ reverse
transcriptase and random hexamer primers. The resulting
cDNAs were diluted 1:3 and each sample was analyzed in
quadruplicate RT-qPCR reactions in 10 μL with SensiMix
SYBR Hi–ROX Polymerase (Bioline, UK) according to the
manufacturer’s protocol. Primers for the chimeric pri-miR-
221 were designed to overlap the mature miRNA and the
artificial flanking region of the vector. Primers for the
endogenous pri-miR were designed in an analogous fash-
ion, overlapping the stem-loop and the respective flank-
ing regions. The RT-qPCR was performed on the Rotor-
Gene  Q (QIAGEN) and the transcript levels of the pri-
 miRNAs and of GFP relative to GAPDH were determined
using the 2–ΔΔCT method. Average fold differences in the
transcript levels are calculated via comparison to the neg-
ative control transfection.

3  Results and discussion

3.1  Over-expression of chimeric and endogenous
miRNA clusters after transient transfection

In the absence of a genomic CHO reference sequence we
initially generated artificial chimeric miRNA constructs
to express miRNAs in CHO cells (Fig. 1). These constructs
consist of CHO-specific mature miRNAs and mmu-miR-
155 loop and flanking regions that have been reported to
yield high miRNA expression [26]. In order to assess the
function of miRNA clusters, which are polycistronic pri-
mary miRNA transcripts that give rise to two or more
mature miRNAs, we constructed two artificial miRNA
cluster expression constructs (miR-15b and miR-16; miR-
221 and miR-222) by sequence concatenation, as outlined
in material and methods. An empty vector was used as
negative control that consisted of the same expression
cassette with cytomegalovirus (CMV) promoter, emGFP,
but no miRNA insert in the emGFP 3’ untranslated region
(3’UTR). Each construct was transfected into a recombi-
nant CHO cell line producing an Epo-Fc fusion protein
(erythropoietin fused to the FC domain of immunoglobu-
lin A) in three independent replicates. From each trans-
fection cells were split into two batch cultures. Transfec-
tion efficiency was estimated from the portion of emGFP
expressing cells 48 h after transfection (Supporting infor-
mation, Fig. S1), which was previously determined to be
the time point when cells reach maximum transient gene
expression [32]. At this time point, 92 ± 7% of cells were
GFP-positive.

The transcript levels of mature miRNA were analysed
by RT-qPCR for each of the miRNAs of the two clusters
(miR-15b-5p, miR-16-5p, mir-221-3p and mir-222-3p) and
normalized against miR-185-5p as a stably expressed con-
trol [32]. During cDNA synthesis miRNA-specific looped
RT-primers, which specifically reverse transcribe a single
mature miRNA, were used to ensure amplification of
mature miRNAs only. Compared to the empty  vector con-
trol, the transcript levels of the mature miRNAs of the
chimeric cluster constructs were not increased (Fig. 2).

Based on these results, we investigated whether the
expression of miRNA clusters could be improved using
the complete CHO sequence. Therefore endogenous miR-
221/222 and the miR-15b/16-2 clusters were amplified
from genomic DNA and cloned into the 3’UTR of the same
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Figure 2. RT-qPCR analysis of mature miRNA levels. Fold changes in
mature miRNA levels are shown relative to the negative control
(mean ± standard deviation of three individual transfections). miR-185-5p
was used as reference miRNA to assess miRNA over-expression after
transfection of artificial and endo genous miRNA expression constructs.
*p<0.05  (Student’s t-test). (A) miR-15b/16-2 constructs. (B) miR-221/222
constructs. 
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Figure 3. Analysis of pri-miRNA folding and transcription. (A) Illustration of putative secondary structures for both artificial and endogenous mir–221 and
mir-15b using Quikfold [38, http://mfold.rna.albany.edu/?q=DINAMelt/Quickfold] with energy rules for RNA(3.0) and default settings. The location of
primers used from amplifying the respective pri–miRNAs, the mature miR–sequences, and the cleavage sites (Drosha/Dgcr8 at the stem/duplex interface,
Dicer at the duplex/loop interface) are indicated. (B) pri-mir-221 and GFP transcription levels two days post transfection analyzed by RT-qPCR, normalized
against GAPDH and related to the negative control (mean ± standard deviation of three individual transfections). 
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vector that was used for the chimeric constructs (Fig. 1).
The same transfection procedure as for the chimeric clus-
ters were performed and resulted in significant 2.3 to 
3.3-fold over-expression of all mature miRNAs of these
clusters (Fig. 2).

3.2  Identification of bottleneck 
of chimeric miRNA biogenesis

Since emGFP expression suggested adequate transfec-
tion efficiencies and transcription rates (Supporting infor-
mation, Fig.  S1), and therefore availability of primary
microRNA transcripts, the lack of miRNA over-expression
from chimeric miRNA clusters could be due to inefficient
processing in the nucleus by Drosha/Dgcr8 or in the
cytosol by Dicer. To evaluate this possibility, primers were
designed to amplify the primary mir-221 transcripts
derived from both the endogenous and the chimeric 
miR-221/222 cluster (Supporting information, Table  1).
These primers were designed individually for each con-
struct, and were located at the border between mature
miRNA and the flanking region (Fig. 3A, Supporting infor-
mation, Table 1). RT-qPCR analysis of pri-miRNA levels
after transfection of the endogenous expression construct
showed a 2-fold increase in endogenous pri-miRNA levels
relative to the empty vector control (Fig. 3B). This result is
in line with the ~3-fold increase observed for mature
 miRNA levels. However, following transfection of artifical
mir-221/222 constructs, a strong (above 50-fold) increase
in artificial pri-miRNA was detected when compared to
the endogenous pri-miR-221 levels of the empty vector
control (see Fig. 3B). This result suggests that the tran-
scription of the chimeric miRNA clusters works well.
However, possibly due to misfolding of the resulting hair-
pins (Fig. 3A) or to the artificial cluster sequence, the pri-
miRNA transcripts are not processed and accumulate in
the nucleus.

4  Concluding remarks

Originally, the chimeric cloning approach for vector-
based miRNA expression that was used in this study was
developed and tested for the stable over-expression of
mouse miRNAs and shRNAs [26]. For this purpose the
method is widely in use. Later, this system was adapted
for use in CHO cells for single miRNAs, which yielded rel-
atively low levels of over-expression for various mature
miRNAs, ranging from 1.2 to 2.3-fold [32], depending on
the overall expression level. The application of the same
cloning strategy for expression of miRNA clusters in this
study did not result in elevated mature miRNA levels.
From our present results it appears that these constructs
are not properly processed compared to constructs con-
taining the endogenous cluster sequence amplified from
gDNA. Analysis of the primary miRNA transcript level

using RT-qPCR showed an enrichment of these tran-
scripts for the chimeric constructs, suggesting that the
murine flanking regions used in this study result in struc-
tural changes that cannot be efficiently processed by
Drosha/DGCR8 in the nuclear processing step. Hackl et al.
[34] have previously shown that while the mature miR-
NAs are highly conserved between human, mouse, rat,
and the Chinese hamster, the homology of the hairpin
sequences is much lower. In this context our results indi-
cate that the precise secondary structure of miRNAs and,
even more importantly, miRNA clusters has important
implications for their processing and biogenesis. While for
miRNAs and natural miRNA clusters the problem can
easily be overcome using the species-specific genomic
sequences for engineering purposes, it is not as easily
resolved in the design of shRNAs or for construction of
artificial clusters consisting of multiple miRNAs that do
not naturally occur in a cluster. Here careful design of the
artificial sequences taking into consideration the expect-
ed folding, especially the drosha and dicer cut sites, may
be required. 
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