

ممه miND

miND® spike-in Cat no: KT-041-MIND Instruction Manual v1.5 May 2024

∃ Tables

5 Table 1 The miND[®] spike-in core sequences

Figures

4 Figure 1 The miND[®] workflow

6 Figure 2 The miND[®] spike-in calibrator fit and miRNA spike-in reads distribution

1 | Product Summary

4 Intended-Use

- 5 miND[®] spike-in Design Features
- 7 Product Components
- 7 Storage and Stability

2 | Important Pre-Analytical Considerations

- 9 Choice of Sample Type and Protocols for RNA isolation and NGS library preparation
- 10 Storage and Stability of the dissolved miND[®] spike-in and RNA
- 10 Working with RNA

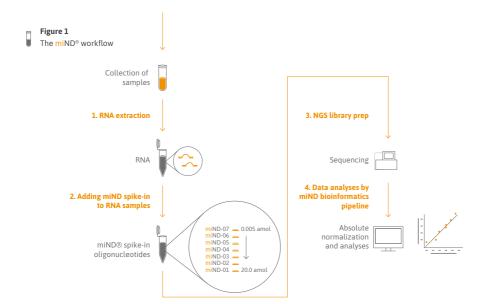
3 | Lab Protocol

12	Essential Components
12	Consumables and Instruments Not Supplied by TAmiRNA
13	Protocol
14	Data Analysis
15	Potential Problems
16	Related Services
16	Related Products
17	Further Reading
18	Notes
21	Notice to Purchaser

Revision history

	Date	Revision	
	09/2022	1.0	
Further information and technical notes	02/2023	1.1	
can be found at	04/2023	1.2	
www.tamirna.com/mind-spike-ins/	05/2023	1.3	
	06/2023	1.4	
	05/2024	1.5	

1


Product Summary

Intended-Use

Intended use

The miND[®] (microRNA NGS Data Analysis) spike-in has been developed for quality control of experiments and absolute quantitation of microRNAs in any biological matrix and species (Khamina et al. 2022). The miND[®] spike-in is added to an RNA sample during the library preparation. The miND[®] spike-in consists of seven oligonucleotides that are provided in a specific ratio to cover the broad concentration range of endogenous small RNAs. A unique design of the miND[®] spike-in reduces sequencing bias and ensures precise quantitation of small RNA (Lutzmayer, Enugutti, and Nodine 2017).

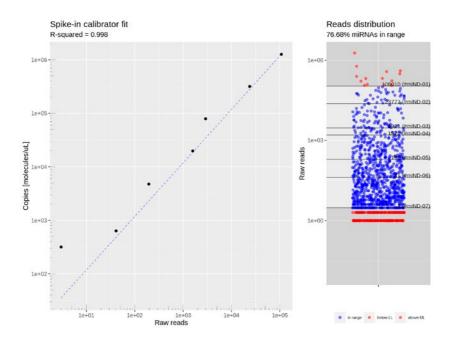
The miND[®] spike-in sequences are detected in the NGS data along with the endogenous small RNAs. Read counts of the miND[®] spike-in and endogenous miRNAs are used to calculate absolute concentrations (amol/µL or molecules/µL). This conversion can either be achieved by using our miND[®] NGS data pipeline (Figure 1) (Diendorfer et al. 2022) or by the incorporation of the provided scripts in an already established NGS data analysis workflow.

miND[®] spike-in design features

Each of seven miND[®] spike-in consists of a unique 13-nucleotide core sequence that is flanked by four randomized nucleotides on the 5' and 3' ends (Table 1) resulting in 65,536 different RNA oligonucleotides per spike-in. The presence of random nucleotides on the 5' and 3' ends of each miND[®] spike-in sequence is expected to minimize the ligation bias of the core sequence. The miND[®] spike-in oligonucleotides contain a 5' phosphate group.

Table 1 = The miND[®] spike-in core sequences

Oligo	Sequence (5' - 3')	Molar amount (amol) in 1 µL of miND spike-in
miND-01	(N)(N)(N)(N)ACGAUCGGCUCUA(N)(N)(N)(N)	20
miND-02	(N)(N)(N)UGAACGUCCGUAC(N)(N)(N)(N)	5
miND-03	(N)(N)(N)(N)UCUCGCGCGCGUU(N)(N)(N)(N)	1.25
miND-04	(N)(N)(N)(N)CGAGUAAUGAACG(N)(N)(N)(N)	0.3125
miND-05	(N)(N)(N)(N)GCUACACGUCG(N)(N)(N)(N)	0.075
miND-06	(N)(N)(N)(N)UAUUCGCGGUGAC(N)(N)(N)(N)	0.01
miND-07	(N)(N)(N)(N)ACCUCCGUUUACG(N)(N)(N)(N)	0.005


The miND[®] spike-in simultaneously enables quality control and absolute quantitation of miRNAs across different sample types:

- miND[®] spike-in serves as a quality control for small RNA-sequencing experiments to confirm the dynamic range and sensitivity of the assay
- miND[®] spike-in are used to generate a linear regression model to calculate absolute concentrations of endogenous microRNAs (Figure 2)

5

Figure 2

The miND[®] spike-in calibrator fit and miRNA spike-in reads distribution

The miND[®] spike-in was developed based on the principles described in the following publication:

 Lutzmayer et al. Novel small RNA spike-in oligonucleotides enable absolute normalization of small RNA-Seq data. 2017 Sci Rep https://doi.org/10.1038/s41598-017-06174-3

Product Components

The miND[®] spike-in contains the following components:

KT-041-MIND-250 - One 1.5 mL tube with lyophilized miND® spike-in KT-041-MIND-48 - One 0.5 mL tube with resuspended miND® spike-in

The entire workflow consists of three main steps:

 a. KT-041-MIND-250 - Dissolve the dry miND[®] spike-in in nuclease-free water (NFW) (Note: NFW is not provided with the kit.). Aliquot spike-ins to enhance stability after reconstitution.

b. KT-041-MIND-48 - The miND® spike-in is ready-to-use

- 2. Add the miND® spike-in to an RNA sample before the NGS library preparation
- Immediately proceed with the NGS library preparation according to the manufacturer's protocol

Storage and Stability

The dry miND[®] spike-in are shipped at ambient temperature and **must be stored at -20°C upon arrival**. The resuspended miND[®] spike-in are shipped on dry ice and must be stored at -80°C upon arrival. Shelf life of the miND[®] spike-in is at least 24 months. Avoid repeated freezing and thawing as this may lead to degradation. Consider preparing aliquots for the dry miND[®] spike-in: each tube is sufficient for 250 NGS library preparations. 2

Important Pre-Analytical Considerations

Choice of Sample Type and Protocols for RNA isolation and small RNA-sequencing library preparation

The miND[®] spike-in has been extensively tested and optimised for plasma samples processed according the following conditions:

- RNA extraction from 200 µL of plasma with either miRNeasy Mini kit (Cat. 217004, Qiagen) or Maxwell RSC miRNA Tissue kit (Promega, Madison, WI, USA, AS1460) following the manufacturer's protocols.
- NGS workflow according to the RealSeq[®]-Biofluids Plasma/Serum miRNA Library Kit for Illumina[®] sequencing (Cat. 600-00012, 600-00024, 600-00048) and the RealSeq[®]-Dual Biofluids Plasma/ Serum miRNA Library Kit for Illumina[®] sequencing (Cat. 700-00024, 700-00048)
- Illumina sequencing using the following parameters: minimal read length 50 bp, minimal required sequencing depth is 7.5 million reads per sample.

For other sample types as well as RNA isolation and small RNA-sequencing protocols, it is important to take into consideration the following factors:

- The yield and efficiency of small RNA isolation varies between different isolation and purification kits. Therefore, the choice of the RNA isolation or purification kit can impact the results.
- The selection of the small RNA-sequencing library preparation protocols might impact miND[®] spike-in performance. Therefore, if other than the recommended library kits are used, users need to perform a pilot experiment with a limited number of samples in order to ensure that the miND[®] spike-in covers the concentration range of the endogenous small RNAs in the target samples.
- The miND[®] spike-in core sequences were mapped against the following genomes: Homo sapiens, Mus musculus, Bos taurus, Rattus norvegicus, Sus scrofa, Caenorhabditis elegans, Drosophila melanogaster and Danio rerio demonstrating minimal overlap with the target genomes. If miND[®] spike-in is planned to be used with samples from other organisms, it is recommended to reach out TAmiRNA team (e-mail: support@tamirna.com) in order to discuss additional bioinformatic analysis.
- We suggest to use one lot of the miND[®] spike-in within a project in order to reduce any potential impact of the lot-to-lot variability on the generated results.

Storage and Stability of the dissolved miND[®] spike-in and RNA

- Store the dry miND[®] spike-in (KT-041-MIND-250) upon arrival at -20°C. Store the resuspended miND[®] spike-in (KT-041-MIND-48) upon arrival at -80°C.
- Resuspend, aliquot and store the miND[®] spike-in at -80°C (KT-041-MIND-250) Always keep the dissolved miND[®] spike-in on ice when handling and return immediately after use to -80°C. Avoid repeated freeze-thawing cycles.
- All samples and miND[®] spike-in aliquots should be stored in nuclease-free plastic tubes with minimized absorption rates for nucleic-acids ("low-binding").
- RNA samples must be stored at -80°C for long-term storage and kept on ice when handling and return immediately after use to -80°C.

Working with RNA

- Ensure that you work in RNase-free environment and that you use molecular grade NFW only.
- Always work with fresh, disposable plastic consumables and wear gloves.
- Handle carefully to avoid contamination.
- Spin down all reaction and sample tubes before opening.
- Clean all surfaces with commercially available RNase decontamination solutions.
- Use filter barrier pipette tips to avoid aerosol-mediated contamination.
- Designated solutions, tips, pipets and other materials and equipment should be assigned for RNA work only.

3

Lab Protocol

Essential components

miND[®] spike-in kit

Consumables and Instruments Not Supplied by TAmiRNA

Molecular grade nuclease-free water

Nuclease-free, low nucleic acid binding tubes (1.5 mL)

Nuclease-free, filter pipette tips

Vortexer

Calibrated pipettes

Centrifuge for <2 mL tubes

small RNA NGS library preparation kit

Wet-Lab Protocol

1. Dissolve the dry **miND**[®] spike-in in sterile nuclease-free water

L. DISSOLVE LI	ie dry miND [®] spike-in in sterile nuclease-free water
Step 1	KT-041-MIND-250: Briefly centrifuge the tube containing the dried miND® spike-in to collect the oligo pellet at the bottom of the tube. KT-041-MIND-48: Proceed directly with Step 6. Consider preparing single-use aliquots.
tep 2	Add 250 µL of the nuclease-free water.
itep 3	Briefly vortex or mix by pipetting 8-10 times up and dow Leave the tube on ice for 20 minutes.
Step 4	Prepare aliquots that can be used for a single experimer The volume of the aliquots can be determined based on the experimental plan (it is recommended to add 1 μL of the dissolved miND [®] spike-in to an RNA sample before the NGS library preparation).
Step 5	Store the aliquots of the dissolved miND [®] spike-in at -80°C.

2. Add the miND[®] spike-in to an RNA sample before the small RNA NGS library preparation.

Step 6	Thaw an aliquot of the dissolved miND [®] spike-in on ice.
Step 7	Mix the miND [®] spike-in by gently tapping the tube and briefly centrifuge to collect the liquid at the bottom of the tube.
Step 8	Add 1 µL of the miND [®] spike-in to each RNA sample right before starting the NGS library preparation experiment.
Step 9	Immediately proceed with the NGS library preparation according to the manufacturer's protocol

Data Analysis

The absolute quantification of miRNAs using miND[®] spike-in requires the following steps:

- mapping and quantification of microRNAs and other small RNAs
- mapping and quantification of miND[®] spike-in
- calculation of absolute concentrations using a regression model

For easy analysis, a docker based toolkit is available on our public GitHub space: https://github.com/tamirna

Documentation, examples, and updated tools will be published there.

In addition, we have published our in-house miRNA analysis pipeline miND® (Diendorfer et al. 2022) that can be used for the whole process of miRNA mapping from raw NGS data.

Potential Problems

Observation: No miND[®] spike-in sequences were detected in the generated NGS data **Potential cause:**

- A tube with the miND[®] spike-in was not centrifuged before adding NFW and the oligo pellet was lost
- The miND® spike-in was reconstituted in a wrong volume of nuclease-free water
- Improper storage of the reconstituted miND® spike-in led to degradation
- Contamination of the miND[®] spike-in with RNases led to degradation
- The miND[®] data analysis pipeline was not used

Observation: The generated NGS data did not pass the quality control of the miND[®] spike-in

Potential cause:

- Less than 5 miND[®] spike-in core sequences detected
- · Insufficient sequencing depth
- Degradation of miND[®] spike-ins due to the use of contaminated reagents
- Low ligation efficiency of spike-ins with the selected small RNA NGS library preparation kit

Related Services

TAMIRNA offers a broad range of high-quality RNA services performed by experts according to GLP standards, including EV/exosome characterization, and RNA isolation from any biological matrix, small RNA and mRNA NGS, qPCR, and customized bioinformatic analyses.

The miND[®] spike-in is compatible with a broad range of sample types and species:

- **Species compatibility:** our bioinformatic pipeline has been tested with human, mouse, rat, pig, cow, and horse samples. Any species with known microRNAs can be analyzed.
- Sample types: besides cells and tissues we have tested conditioned media, plasma (various anti-coagulants), serum, urine, CSF, brain microdialysate, and synovial fluid. This includes enrichment of EV/exosomes from all biofluids.
- Laser microdissection: the miND[®] service can be used to analyze dissected tissue compartments for increased precision. Learn more here: https://www.tamirna.com/space-resolved-rna-profiling-in-complex-tissues/
- Other RNAs: PNK-treatment of total exRNA increases coverage of mRNA and long non-coding RNAs in your data.
- RNA-seq: we offer mRNA-seq (polyA and total RNA) alongside our small RNA-seq workflow to generate high quality microRNA/mRNA datasets.

Read more about these services at www.tamirna.com/small-rna-sequencing-services/

Related Products

TAmiRNA offers research-use kits for analysis of microRNA biomarkers. Read more about the products at www.tamirna.com

Further Reading

Below you find a list of publications describing the development and application of the $miND^{\otimes}$ spike-in:

- Khamina, K. et al. A MicroRNA Next-Generation-Sequencing Discovery Assay (miND) for Genome-Scale Analysis and Absolute Quantitation of Circulating MicroRNA Biomarkers. Int. J. Mol. Sci. 2022,23,1226. https://doi.org/ 10.3390/ijms23031226
- 2. Diendorfer, A. et al. miND (miRNA NGS Discovery pipeline): a small RNA-seq analysis pipeline and report generator for microRNA biomarker discovery studies. F1000Re-search 2022,11:233,1226. https://doi.org/10.12688/f1000research.94159.1
- Gutmann, C. et al. Association of cardiometabolic microRNAs with COVID-19 severity and mortality. Cardiovasc Res. 2022, 118(2):461-474. https://doi.org/10.1093/cvr/cvab338
- Lutzmayer, Stefan, Balaji Enugutti, and Michael D. Nodine. 2017. 'Novel Small RNA Spike-in Oligonucleotides Enable Absolute Normalization of Small RNA-Seq Data'. Scientific Reports 7 (1): 5913. https://doi.org/10.1038/s41598-017-06174-3.

Notes

Notes

Notes

Notice to purchaser

miND[®] is a registered trademark of TAmiRNA GmbH, Vienna, Austria.

RealSeq[®] is the Registered Trademark of RealSeq Biosciences, Inc. All other brands and names contained herein are the property of their respective owners.

A patent was filed for the invention related to novel spike-in oligonucleotides for absolute quantitation of nucleotide sequence data under WO2018138334A1.

The purchase of this product conveys to the buyer the non-transferable right to use the purchased product and components of the product only in research conducted by the buyer (whether the buyer is an academic or for-profit entity).

Imprint Copyright: 2022 / TAmiRNA GmbH Text: TAmiRNA GmbH Concept & Design: www.fuergestaltung.at Illustrations: www.birgitbenda.at

